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Crisis phenomena arising in a subsonic air flow around a thick airfoil with vortex cells have been numeri-
cally simulated in the process of solving the nonstationary equations of mass and energy conservation and
Reynolds equations closed by a model of shear-stress transfer with the use of the finite-volume factorization
method.

Introduction. The design of an E′ KIP ("E′ kologiya I Progress") flying vehicle shaped as a small-aspect-ratio
thick airfoil resembling a flying plate, proposed in [1] (Fig. 1a), initiated numerical investigations on the development
of methods for control of flows around bodies, in particular, a circular cylinder, with the use of vortex cells built into
their profile [2, 3]. Within the framework of the generalized conception [4], cavities, trenches, holes, and clearances
between bodies of different dimension, including those with central bodies built into them, are considered as vortex
cells. In this conception, both passive and active vortex cells are used. It is assumed that a flow circulating in an ac-
tive vortex cell is subjected to an energy action (produced by a suction, a movement of a part of the cell profile
around which a stream flows, or a rotation of a central body).

The configuration of a vortex cell (Fig. 1b) is topologically formalized by an elliptic profile with a central
body built into it. The central body serves for intensification of the flow circulating in the cell; in this case, the well-
known method of suction distributed over the surface of a body or, when a body is cylindrical, the method of twisting
of the flow around it with a constant angular velocity is used. In the case where a central body is absent, the flow in
a cell is intensified by a lumped (discontinuously distributed) suction or, theoretically, by the movement of a portion
of its profile. As a varied local parameter acting on the flow circulating in the cell, the rate of suction or the tangen-
tial velocity of the flow at the moving wall is selected, and, as an integral factor, the volumetric dimensionless rate of
flow Cq expressed in terms of the characteristic velocity and length scales is used.

Several vortex cells can be built into an object. The dimensions of the cells are selected empirically; they
comprise small fractions of the characteristic dimensions of the body. In addition to the geometrical parameters of a
vortex cell, the dimensions of a window, the coordinates of its center on the profile of the body, and the radii of the
roundings of the transition parts between the profile of the cell and the generatrix of the body are considered (Fig.
1b). In this way, a streamlined surface of the body with curvilinear slots–vortex cells is formed; it is appropriate to
locate these cells in the neighborhood of the flow separations on the profile of the body. Vortex cells are introduced
for the purpose of organization of a near-nonseparation flow around the body and, therefore, for improvement of its
aerodynamic characteristics.

In [5–17], methods of control of laminar and turbulent flows of an incompressible fluid around large-aspect-
ratio E′ KIP airfoils equipped with a system of active vortex cells were considered. In these works, the operating pa-
rameters of the vortex cells, providing a flow without separation around a thick airfoil, an additional circulation (the
supercirculation effect), and an increase in the aerodynamic lift, have been determined. The large lift coefficient
Cy > 1 was obtained in the wide range of angles of attack from −30o to +25o. The superiority, in aerodynamic char-
acteristic, of thick profiles with vortex cells over thin profiles, including those equipped with units of control of a flow
around them, was demonstrated.
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The aim of the present work is to investigate the influence of the compressibility of a fluid on the flow of
this fluid around an E′ KIP airfoil with vortex cells (Fig. 1a). As in [11–15], we considered an airfoil with slightly
rounded leading and trailing edges, and the rate of suction of fluid from the surface of the central-bodies located in
the cells was assumed to be equal to 0.05 of the characteristic velocity of the incident flow U. The quantities being
considered were brought to the dimensionless form and expressed in terms of the flow density and the airfoil-chord
length L. The angle of attack was assumed to be equal to zero. The intensity of the flows circuiting in the cells was
very high and, consequently, the compressibility of the fluid significantly influenced the flow around the airfoil even
at moderate Mach numbers.

The profile of a streamlined body is formed by an upper circular arc with a radius of 0.577 and two lower
circular arcs of radius 0.175, connected by a straight line with a coordinate y = −0.0866. The radius of the rounding
of the leading and trailing edges is equal to 0.05. The arc coordinate of the center of the first-cell window is 0.685,
and the length of this window is 0.0834. The elliptic-shape cells (Fig. 1b) with longitudinal and transverse semi-axes
ax = 0.0584 and ay = 0.5ax are built into the thick profile at a depth y0 = 0.7ay. At the centers of the cells, elliptically
shaped central bodies with semi-axes of 0.5ax and 0.25ax are located. The other three cells with arc coordinates 0.861,
0.992, and 1.107 are topologically identical to the first cell and have windows of size 0.0696, 0.0556, and 0.0417. The
longitudinal semiaxes of the elliptical cells are 0.0487, 0.0389, and 0.0292, and the radii of the roundings of their
edges are 0.00084, 0.00067, and 0.00051.

Formulation of the Problem and Method of Solution. A stationary, uniform, two-dimensional motion of air
in a cylindrical computational region is considered. The center of this region is coincident with the origin of the
Cartesian coordinate system x, y (Fig. 1a). The outer boundary of the computational region is at a large distance
(38.62 chords) from a body. The parameters of the flow at the input part of the boundary of this region are fixed, and
soft boundary conditions (the conditions of solution continuation) are set at its output part. The parameters of turbu-
lence at the input to the computational region are identical to those in the problem on an incompressible-viscous flow
[5–17]: the degree of turbulence of the external flow is at the level characteristic of a wind tunnel, Tu∞ = 1.5%, and
the scale of turbulence is assumed to be equal to the airfoil chord. On the thermally insulated surfaces, around which
a stream flows, the adhesion conditions are fulfilled. In the incident flow, the Reynolds number Re∞, equal to 105, re-
mains unchanged (at this value of Re∞ the aerodynamic characteristics of the medium are practically independent of
its viscosity) and the Mach number M∞ varies from 0 to 0.5. The Prandtl number for air is 0.7 and the turbulent
Prandtl number is assumed to be equal to 0.9.

The airfoil is surrounded by a three-stage computational grid. The annular layer of thickness 0.13, adjacent to
the airfoil profile, contains 51 nodes in the transverse direction. Within the distance from the airfoil-profile nose to the
first vortex cell, 121 nodes are located, 16 nodes are in the cells, 26 nodes are between the cells, and 201 nodes are
located within the distance from the last cell to the leading edge of the airfoil profile. The grid pitch near the surface
is equal to 0.0005. The second and third annular layers of thickness 3 and 35 contain 101 and 41 nodes in the radial
direction and 421 nodes along the circumferential coordinate.

Each vortex cell is covered by an individual external grid adjacent to its window. The vertical sizes of all the
subregions are 0.1, the number of nodes along the normal to the wall is 51, and the near-wall pitch is 0.001. The
computational nodes bunch in the neighborhood of the edges. The near-edge pitch is assumed to be equal to 0.001.
Within each vortex cell, a cylindrical grid with a bunching of nodes near the walls of the cell, the central body (the

Fig. 1. E′ KIP airfoil of thickness 0.373 with vortex cells (a) and an elliptically
shaped vortex cell with rounded pointed edges (b).
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near-wall pitch is 0.0001), and the pointed edges (a minimum pitch is 0.001) is constructed. The zones of the leading
and trailing edges of the vortex cells are covered by curvilinear fine grids, much as was done in [14, 17].

By analogy with the approach used in [8–17], the additional drag Cxadd of the airfoil with vortex cells is de-
termined, in the case of suction from the surface of the central body, by the energy necessary for the maintenance of
the flow rate of the sucked air. As a result, the drag coefficient of the cylinder with vortex cells, corrected for the
expenditure of energy, is determined as Cxint = Cx + Cxadd; this coefficient is used for determining the lift-drag ratio K
= Cy

 ⁄ Cxint.
A turbulent flow of a compressible viscous gas around the E′ KIP airfoil with vortex cells is calculated using

a modified VP2 ⁄ 3 package, in which the multiblock computational technologies developed in [13, 16, 17] are used for
solving the stationary equations of mass and energy conservation and the Reynolds equations closed by the equations
of shear-stress transfer [18]. The SIMPLEC procedure of pressure correction is generalized for the case of compress-
ible turbulent flows, including those with compression shocks. As follows from [19, 20], to stabilize the computational
process, it makes sense to approximate the convective terms of the Reynolds equations by the Lenard scheme and the
convective terms of the other equations by the Van Leer scheme [17].

Discussion of the Results. Figures 2 and 3 present some of the results of investigation of the influence of the
number M∞ on the aerodynamic characteristics and the pattern of flow around the E′KIP airfoil being considered.

It should be noted that, at a definite volumetric rate of the sucked-air flow Cq = 0.0212, the mass flow cq
decreases with increase in M∞ (Fig. 2a, curve 4). As a consequence, at small values of M∞, the additional drag of the
profile, which is due to the expenditure of energy Cxadd, decreases (curve 3). However, the calculated drag coefficient
Cx (curve 2) remains practically unchanged in the range of M∞ = 0–0.4, which causes a fairly moderate decrease in
the total drag of the thick E′KIP airfoil Cxint (curve 1).

In the range of change in M∞ from 0.4 to 0.7, we failed to obtain a stationary solution of the problem; there-
fore, the dependences of the integral characteristics on M∞ are denoted by the dashed lines in Fig. 2. It may be sug-
gested that a flow around the airfoil being considered is nonstationary and cyclic in character. However, at M∞ = 0.7
the results obtained differ markedly from the results obtained for small M∞. In this case, the total drag is more than
two times larger and reaches 0.24, and Cxadd decreases sharply (by a factor of seven as compared to that at M∞ = 0).
It is interesting that cq remains at its value attained at M∞ = 0.4.

The calculated drag of the airfoil Cx, as follows from Fig. 2b, consists of two components: the drag of the
airfoil itself Cxpr (curve 5) and the total drag of the vortex cells Cxcell (curve 6). As may be seen, at small values of
M∞, the airfoil is acted upon by a driving force since Cxpr < 0, and all of the drag force is concentrated in the profiles
of the vortex cells. When M∞ increases, there appear tendencies for an increase in Cxpr and a decrease in Cxcell. At
values of M∞ smaller than 0.4, these tendencies completely compensate each other, while at M∞ = 0.7, both compo-
nents of Cx are positive and the drag of the airfoil itself prevails over the drag of the vortex cells.

As follows from Fig. 2c, the lift coefficient Cy of the airfoil with vortex cells is maximum at M∞ = 0. When
M∞ increases, the coefficient Cy and its components decrease monotonically, and, at small values of M∞, Cypr (curve

Fig. 2. Dependence of the drag (a) and lift (c) coefficients and their compo-
nents (b, c) determined for the E′KIP airfoil, the scaled values of the lift-drag
ratio (c), and the flow coefficient (a) on M∞: 1) Cxint; 2) Cx, Cy; 3) Cxadd; 4)
10cq; 5) Cxpr, Cypr; 6) Cxcell, Cycell; 7) 0.1 K.
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5) exceeds Cycell (curve 6). At M∞ = 0.7, the E′ KIP airfoil with vortex cell has no aerodynamic lift, i.e., Cy < 0. How-
ever, Cycell remains positive, even though its value is small.

And, lastly, the lift-drag ratio of the airfoil with vortex cells (curve 7) remains stable and large (K = 18) at
small values of M∞ until M∞ = 0.3 because the rates of decrease in Cy and Cxint with increase in M∞ are equal. How-
ever, K < 0 at M∞ = 0.7.

The evolution of the pattern of flow around the E′ KIP profile with increase in M∞ explains the behavior of
its aerodynamic characteristics to a large extent (Fig. 3). The increase in the dimensions of the separation zone in the
near wake downstream of the airfoil correlates with the decrease in the total drag (Fig. 3a and b), and, even at M∞ =
0.4, in the neighborhood of the first vortex cell (Fig. 3e), there arises a local supersonic zone. It should be noted that
the pattern of a separation flow in a vortex cell changes insignificantly with increase in M∞ from 0.3 to 0.4 (Fig. 3d
and e). The change to M∞ = 0.7 causes a transformation of the pattern of flow around the thick airfoil (Fig. 3c) with
a flow separation upstream of the system of vortex cells, and the cells find themselves within the separation zone in
the near wake. The structure of the separation flow in the cells also changes substantially (Fig. 3f).

Conclusions. It has been established that there exist critical Mach numbers of the incident flow M∞ at which
there arise crisis phenomena and the system of control of the flow around a thick airfoil with vortex cells becomes
ineffective. These numbers fall within the range 0.4–0.5 at a moderate (0.025) flow rate Cq.

This work was carried out with financial support from the Russian Foundation for Basic Research (project
Nos. 06-08-81002 and 05-01-00162) and the European Union in accordance with the Framework-6 Program (project
VortexCell2050).

Fig. 3. Comparative analysis of the patterns of flow around the E′ KIP airfoil
with vortex cells (a–c) and the patterns of flow in the neighborhood of the
first vortex cell (d–f) with isomaches (denoted by the dashed lines) determined
for different values of M∞: M∞ = 0.3 (a, d); 0.4 (b, e), and 0.5 (c, f); 1–7) M
= 0.1, 0.3, 0.5, 0.7, 0.9, 1, 1.1.
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NOTATION

ax, ay, sizes of the semi-axes of an elliptical vortex cell, fractions of L; bx, by, sizes of the semi-axes of an
elliptical central body, fractions of L; Cx, drag coefficient; Cxadd, coefficient of the additional drag that is due to the
expenditure of energy for the maintenance of suction from the surface of the central bodies; Cxint, drag coefficient cor-
rected with account for the expenditure of energy; Cy, lift coefficient; Cq, rate of flow through the surface of the cen-
tral body, fractions of UL; cq, rate of flow through the surface of the central body, fractions of ρUL; K, lift-drag ratio
(K = Cy

 ⁄ Cxint); L, chord length, m; Re, Reynolds number (Re = ρUL ⁄ µ); r, radius of a rounding, fractions of L; s,
dimensionless coordinate along the profile of the cylinder expressed in terms of the chord; Tu, degree of turbulence of
the flow, fractions of U; U, velocity of an undisturbed flow, m ⁄ sec; x, y, dimensionless Cartesian coordinates in the
coupled systems expressed in terms of the chord; y0, coordinates of the center of a cell, fractions of L; µ, dynamic
viscosity coefficient, kg ⁄ (m⋅sec); ρ, density of a fluid, kg ⁄ m3. Subscripts: add, additional; cell, loads on only the vor-
tex cells; int, summarized; pr, loads on the airfoil itself; ∞, parameter of an undisturbed flow.
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